
3/27/2018

4

Singly-Linked List Deletion is Linear in Size of List

Deletion is slower:
◦ to delete player p
◦ from a list that starts at player_list,
◦we must walk over the list to find p,
◦ then change pointer to p to p->next.

In general,
◦with N things in the list,
◦we examine on average N/2.

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Modify Player Structure to Use Dynamic Allocation

Before writing player_delete,
◦ let’s modify our player structure
◦ to use dynamic allocation
◦ for the name* field.

*We treated the password field as a normal
string before, but technically it should be

hashed or encrypted to a fixed-length string.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Review: Example Player Structure

struct player_t {
char name[32];
char password[20];
int32_t age;
int32_t num_games;
int32_t score_dist[16];
struct game_t* game;

};

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

char* name;

name
points to a

dynamically
allocated
block of
memory.player_t* next;

next is used for the linked list.

Modify player_init to Dynamically Allocate the Name

Then, in player_init, we can write…
p->name = malloc (strlen (n) + 1);
if (NULL == p->name) { return 0; }
strcpy (p->name, n);

or
p->name = strdup (n);
if (NULL == p->name) { return 0; }

(recall that n is the new player’s name).

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

