
3/10/2018

7

Start with error
checking: is the
player already

in a game?

the new
game

the player

A Player Starts a New Game? Call player_new_game.

int32_t player_new_game
(struct player_t* p,
struct game_t* g)

{
if (NULL != p->game) {

return 0;
}
p->game = g;
p->num_games++;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Return
success.

Update fields
as necessary
to reflect new
game starting.

A Player Starts a New Game? Call player_new_game.

int32_t player_new_game
(struct player_t* p,
struct game_t* g)

{
if (NULL != p->game) {

return 0;
}
p->game = g;
p->num_games++;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

the score of the
finished game

the player

A Player Finishes a Game? Call player_finish_game.

int32_t player_finish_game
(struct player_t* p,
int32_t score)

{
if (NULL == p->game) {

return 0;
}
p->game = NULL;
p->score_dist[score_to_bin (score)]++;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Use a helper function
to find the right bin.

Return
success.

Start with error
checking: is the

player not
in a game?

Update game field.

A Player Finishes a Game? Call player_finish_game.

int32_t player_finish_game
(struct player_t* p,
int32_t score)

{
if (NULL == p->game) {

return 0;
}
p->game = NULL;
p->score_dist[score_to_bin (score)]++;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

