
3/7/2018

12

A Function to Check Whether a stack_t is Full

// Returns 1 if stack is full, or
// 0 if stack is not full.

int32_t stack_full
(const struct stack_t* s)

{
return (0 == s->top);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 45ECE 220: Computer Systems & Programming

Information Hiding and Performance Sometimes at Odds

How do we push a string without
exposing details of the implementation?

For example,
◦ should we make a copy of the string, or
◦ just copy the pointer passed in?

Caller or callee
◦ must ensure that string does
not disappear after it is pushed,

◦ but which one? Copying twice is wasteful.
Let’s retain our current design, so
stack_push must make a copy.

© 2018 Steven S. Lumetta. All rights reserved. slide 46ECE 220: Computer Systems & Programming

How Can We Handle Long Strings? Fail…

What should happen if caller passes
a string longer than 199 characters?
◦Fail? A valid choice, but not so useful.
◦Copy the first 199? Also valid, but
may not be what the user wants.

◦We have no other choice with the
current implementation!

We will go with failure for simplicity.

© 2018 Steven S. Lumetta. All rights reserved. slide 47ECE 220: Computer Systems & Programming

for copying
string

No space on
stack? Fail.

the stack

the string

A Function to Push a String Onto a stack_t

// Returns 1 on success,
// or 0 on failure.
int32_t stack_push (struct stack_t* s,

const char* str)
{

int32_t i;
char* write;
if (stack_full (s)) {

return 0;
}

© 2018 Steven S. Lumetta. All rights reserved. slide 48ECE 220: Computer Systems & Programming

