
3/7/2018

11

Use the -> Operator to Access Fields after Dereferencing

One more operator:
◦->
◦dereference and access a field

Rather than writing

(*s).top ,

we can write

s->top .

The two expressions are equivalent.

© 2018 Steven S. Lumetta. All rights reserved. slide 41

Use the -> operator.

Revised Function to Check Whether a stack_t is Empty

// Returns 1 if stack is empty, or
// 0 if stack is not empty.

int32_t stack_empty
(const struct stack_t* s)

{
return (500 == s->top);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

Notice the human naming convention:
the stack_ prefix tells programmers

that the function deals with a stack_t.

A Function to Initialize a stack_t

void stack_init (struct stack_t* s)
{

s->top = 500;
}

© 2018 Steven S. Lumetta. All rights reserved. slide 43ECE 220: Computer Systems & Programming

What Other Operations Do We Want for stack_t?

What other operations might we
write for our stack?
◦Check whether a stack_t is full,
◦push a string onto a stack_t, and
◦pop a string from a stack_t.

The first is easy.

For push/pop, we need to make choices.

© 2018 Steven S. Lumetta. All rights reserved. slide 44ECE 220: Computer Systems & Programming

