
3/5/2018

3

stopping condition:
nowhere to look

same expression as before

Recursive Version is Slightly Simpler

(The code is slightly simpler.)
{

int32_t mid;

if (high < low) { return -1; }

mid = low + (high – low) / 2;

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

recurse with
modified high

recurse with
modified low

Recurse with Modified Bounds When Not Found

if (value == array[mid]) {
return mid; // Found!

}
if (value < array[mid]) {

return binary_search
(array, low, mid – 1, value);

}
return binary_search

(array, mid + 1, high, value);
} // end of function

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Some Types of Recursion Can Be Compiled Away

When recursion
◦happens only at the end of a function,
◦ in other words: return <recursive call>,
◦ it is called tail recursion.

Binary search is an example of tail recursion.
A good optimizing compiler
◦can transform tail recursion
◦ into an iterative version,
◦avoiding use of extra stack frames.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Let’s Do an Example Together

Help me solve this problem recursively…

Task:
◦print a string backwards and
◦ return its length (not counting NUL).

Let’s call the function print_reverse.

What arguments should be passed?

a (constant) string

What should the return type be?

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

int32_t

