
3/6/2018

4

Ready to Write the Recursive Function

Now we’re ready to write the function.
Here’s a signature:

void can_reach (int x, int y);

The function should
◦ set all locations reachable from (x,y)
to 1 in found, and

◦ set saw_exit to 1 iff the exit is
reachable from (x,y).

(To do so, the function will call itself.)

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

No left
wall?

Space to left is reachable.

(x,y) is
reachable.

Mark as Reachable, then Check Children

void can_reach (int x, int y)
{

found[x][y] = 1;
if (0 == (maze[x][y] & 1)) {

can_reach (x – 1, y);
}
if ((0 == maze[x][y] & 2)) {

can_reach (x + 1, y);
}

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

No right
wall?

Space to right is reachable.

Same Check and Marking for Right Child (Value 2)

void can_reach (int x, int y)
{

found[x][y] = 1;
if (0 == (maze[x][y] & 1)) {

can_reach (x – 1, y);
}
if (0 == (maze[x][y] & 2)) {

can_reach (x + 1, y);
}

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

No
upper
wall?

Space above is reachable.

Same Check and Marking for Upper Child (Value 4)

if (0 == (maze[x][y] & 4)) {
can_reach (x, y - 1);

}
if (0 == (maze[x][y] & 8)) {

can_reach (x, y + 1);
}
if (0 != (maze[x][y] & 16)) {

saw_exit = 1;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

