
3/6/2018

3

Represent the Maze with an Array of Bit Vectors

We can represent the maze with an array:
static uint8_t maze[10][10];

Each space in the array is a bit vector 
composed of the following bits:
◦ // 1 – the space has a left wall
◦ // 2 – the space has a right wall
◦ // 4 – the space has an upper wall
◦ // 8 – the space has a lower wall
◦ // 16 – the space is the exit

© 2018 Steven S. Lumetta.  All rights reserved. slide 9ECE 220: Computer Systems & Programming

Do You Understand the Representation?

(Reminder: L=1, R=2, U=4, D=8, E=16)

For example,
◦maze[0][0] is
◦maze[0][1] is
◦maze[3][1] is
◦maze[4][2] is
◦maze[2][2] is

© 2018 Steven S. Lumetta.  All rights reserved. slide 10ECE 220: Computer Systems & Programming

0 421 3
0
1
2
3

x coordinate

y 
co

o
rd

in
a

te

E

7 (1 | 2 | 4)
9
3
7
29

Outline for a Recursive Solution

Let’s solve the problem recursively.
Here’s the approach:
◦Keep track of reachable locations.
◦Write a function to mark 
one location as reachable.

◦Within the function, call 
the same function to 
mark all “children” 
(adjacent reachable 
neighbors) as reachable.

© 2018 Steven S. Lumetta.  All rights reserved. slide 11ECE 220: Computer Systems & Programming

0 421 3
0
1
2
3

x coordinate

y 
co

o
rd

in
a

te

E

Represent Reachable Locations with a Second Array

Track reachable locations with a second array:

static uint8_t found[10][10];

Each element is either:
◦0 – the space has not been found/reached
◦1 – the space has been found/reached

And we use one variable for the exit:

static int32_t saw_exit;

(Both of these should be initialized to all 0s.)

© 2018 Steven S. Lumetta.  All rights reserved. slide 12ECE 220: Computer Systems & Programming




