
2/17/2018

2

char* Used to Point to NUL-Terminated Strings

char* cptr = "My favorite string";

In C, a char*
◦ can point to a string,
◦ (or just to a single character in memory), but
◦ does not include space for the string.

In declaration above,
◦ string is a constant
◦ stored in global data area by the compiler.
◦ cptr is then written with … what?
◦ … the address of the letter 'M'.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Pitfall: * Associates with Variable, Not Type

If one declares variables in one line, as in

int * A, B;

A has type int*.

What about B?

B has type int.

(Be careful, and be clear in your code.)

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Dereferencing Produces Value to Which Pointer Points

C provides two operators for pointers:

* the dereference operator

& the address operator

Dereferencing a pointer evaluates to
the value to which the pointer points.

char* cptr = "My favorite string";

For example, *cptr evaluates to 'M'.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Pitfall: Avoid Condensing Expressions to Illegibility

One cannot dereference a non-pointer
type (meaningless, so compiler gives error).

Dereference and multiply use same character.
Compiler chooses operator from context:
◦dereference is unary: * <a pointer>, but
◦multiplication is binary: <expr> * <expr>.

Write your code so that humans need not
pretend to be compilers!
Example: (*A) * (*B), not *A**B

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

