
2/12/2018

3

Is R5 – R6 a Constant Inside a Function?

One common question:
◦why use both R5 and R6?*
◦ (Aren’t R5 and R6 always
the same distance apart?)

One answer:
◦ code adds/removes values from the stack
◦ (so, no, the difference is not constant).

*Note that the x86 (IA-32) ISA calling
convention also uses two registers.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Compiler Does Know R5 – R6 Most of the Time

What kinds of things are pushed?
◦ callee-saved registers
◦arguments to subroutines
◦ spilled values (when compiler runs out of
registers for performing calculations)

◦ certain types of temporary allocation
(not covered in our class—see alloca).

But—except for the last case—the compiler
KNOWS when R6 moves, so it could still
generate the right code…

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Compiler Often Does Not Provide Such Information

However, information about R6’s movement
is often not passed to a debugger.
So …
◦ you can turn on high levels of optimization
◦and compilers (x86 compilers, for example)
will reclaim the frame pointer,

◦but good luck trying to debug (debugger will
not be able to identify stack frames).

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

What is the Order of Local Variables?

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

caller’s stack frame

previous frame pointer
return address

return value

local variables

parameters

What about
the order
of local
variables?
Used only
within the
function, so
choice doesn’t
matter.

R6→

R5→
R5+1
R5+2
R5+3
R5+4

R5+0

