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Is R5 – R6 a Constant Inside a Function?

One common question:
◦why use both R5 and R6?*
◦ (Aren’t R5 and R6 always 
the same distance apart?)

One answer: 
◦ code adds/removes values from the stack 
◦ (so, no, the difference is not constant).

*Note that the x86 (IA-32) ISA calling
convention also uses two registers.
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Compiler Does Know R5 – R6 Most of the Time

What kinds of things are pushed?
◦ callee-saved registers
◦arguments to subroutines
◦ spilled values (when compiler runs out of 
registers for performing calculations)

◦ certain types of temporary allocation
(not covered in our class—see alloca).

But—except for the last case—the compiler 
KNOWS when R6 moves, so it could still 
generate the right code…
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Compiler Often Does Not Provide Such Information

However, information about R6’s movement 
is often not passed to a debugger.
So …
◦ you can turn on high levels of optimization
◦and compilers (x86 compilers, for example) 
will reclaim the frame pointer,

◦but good luck trying to debug (debugger will 
not be able to identify stack frames).
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What is the Order of Local Variables?
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caller’s stack frame

previous frame pointer
return address

return value

local variables

parameters

What about
the order
of local
variables?
Used only
within the
function, so
choice doesn’t 
matter.

R6→

R5→
R5+1
R5+2
R5+3
R5+4

R5+0




