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Recall Why ISAs Define Calling Conventions

A compiler must systematically transform 
function calls into assembly instructions.

Why systematically?
1. The compiler is a computer program: 

that’s all it can do!
2. Code generated by different compilers 

should interoperate, so those compilers 
must make the same choices for 
subroutine call interfaces.
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data for main
data for foo

data for 
current function

. .
 .

Recall the LC-3 Calling Convention

R0-R3: caller-saved
R4: global data pointer
R5: frame
pointer
R6: stack 
pointer
R7: return 
address
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system space

system space

code

stack

global data
heap 

(dynamically 
allocated)

R4→

R6→

R5→

Recall the Structure of the LC-3 Stack Frame
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caller’s stack frame

previous frame pointer
return address

return value

local variables

parameters

R6 points to
top of stack.
R5 points to
bottom of 
local variables.
R5+0, -1, … are
local variables.
R5+4, +5, … are
parameters.

R6→

R5→
R5+1
R5+2
R5+3
R5+4

R5+0




