
2/12/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Stack Frames Revisited

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Recall Why ISAs Define Calling Conventions

A compiler must systematically transform
function calls into assembly instructions.

Why systematically?
1. The compiler is a computer program:

that’s all it can do!
2. Code generated by different compilers

should interoperate, so those compilers
must make the same choices for
subroutine call interfaces.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

data for main
data for foo

data for
current function

. .
 .

Recall the LC-3 Calling Convention

R0-R3: caller-saved
R4: global data pointer
R5: frame
pointer
R6: stack
pointer
R7: return
address

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

system space

system space

code

stack

global data
heap

(dynamically
allocated)

R4→

R6→

R5→

Recall the Structure of the LC-3 Stack Frame

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

caller’s stack frame

previous frame pointer
return address

return value

local variables

parameters

R6 points to
top of stack.
R5 points to
bottom of
local variables.
R5+0, -1, … are
local variables.
R5+4, +5, … are
parameters.

R6→

R5→
R5+1
R5+2
R5+3
R5+4

R5+0

