
10/20/2020

2

Pitfall: Leaving Out Parameter Names

A declaration without parameter names:
// draw a rectangle of *’s

// given height and width

int32_t draw_rectangle

(int32_t, int32_t);

So … which argument is which?
Compiler cannot help: the types are identical.

Always include parameter names.

© 2018-2020 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Pitfall: Leaving Out Declarations

Early C standards did not require
declarations to call functions.

Instead used auto-conversion and defaults:
◦ integer arguments converted to int
◦ floating-point arguments
converted to double

◦ return value defaulted to int.

These assumptions often fail, but
compiler can not help without a signature!

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

C Passes Arguments to Functions by Value

C uses call by value.
Function arguments/parameters are

values of expressions.
Copies of values are passed to a function.
◦The function owns the copies
(and may change them).

◦The function cannot change
the original values,

◦ even if they correspond
to values of variables.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

LC-3 Call Sequence Illustrates Operation of Call by Value

To understand how call by value works,
recall the call sequence in LC-3:

1. Caller evaluates arguments (expressions)
and pushes values onto stack.

2. Copies on the stack form the parameters
portion of the function’s stack frame.

3. Executing function can modify its
parameter values (the copies).

4. When function returns, caller discards
copies from stack (by popping them).

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

5 6

7 8

