
2/5/2018

9

Logical Operators Shortcut Evaluation in C

In C,
◦ logical AND and OR
◦ stop evaluating operands
◦ when the operator’s result is known.

For example,
0 && this_function_crashes ()

does NOT call the function.
The first operand is false (0 in C),
so the second operand (the function call) is
not evaluated.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

Logical AND Stops on False, Logical OR Stops on True

Similarly, if we write
1 || this_function_crashes ()

does NOT call the function.

The first operand is true (not 0 in C),
so the second operand (the function call) is
not evaluated.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Use Shortcutting to Protect Unsafe/Undesired Actions

Here’s a more realistic example…
if (1 == scanf ("%d", &age) &&

0 <= printf ("Salary? ") &&

1 == scanf ("%d", &salary)) {

// use age and salary

}

scanf in these cases returns 1 on success,
and printf returns 8 (characters) on success.

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

Use Shortcutting to Protect Unsafe/Undesired Actions

And another one…
if (0 <= dist_sq &&

walk_p (me, sqrt (dist_sq))) {

// go for a walk

}

Calculating the square root (sqrt) of a
negative number may cause a crash.

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

