
1/30/2018

9

Finish by Restoring R1 and Returning

SUM_OF_3
ST R1,SAVE_R1 ; save R1
LDR R0,R6,#0 ; R0 ← v1
LDR R1,R6,#1 ; R1 ← v2
ADD R0,R0,R1 ; R0 ← v1 + v2
LDR R1,R6,#2 ; R1 ← v3
ADD R0,R0,R1 ; R0 ← v1 + v2 + v3
ADD R6,R6,#3 ; pop all three
LD R1,SAVE_R1 ; restore R1
RET
SAVE_R1 .BLKW #1

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

base

.
.
.

v1
v2
v3

Restore R1
and return.

R6→

Breaking the Abstraction Can Be Done Safely

To use SUM_OF_3,
◦push three values, call SUM_OF_3,
and use the result in R0.

◦Or allocate three locations with one ADD,
write in three values, then call …

We can safely use
◦any data on the stack
◦ if we know that it’s there.

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Can We Generalize SUM_OF_3 to SUM_OF_N?

The picture to the right shows
◦an array of three integers
◦ on top of the stack.

What if we want to generalize?
Can we write a subroutine
◦ that adds a variable
number of non-negative
numbers

◦ from an array on top of the stack?

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

base

R6→

.
.
.

v1
v2
v3

Can We Generalize SUM_OF_3 to SUM_OF_N?

Can we write a subroutine
that adds N non-negative
numbers from the top of
the stack?

Yes!

But the subroutine must
know the value of N.

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

base

R6→

.
.
.

v1

vN

.
.
.

