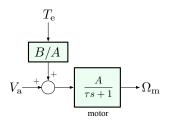
Case Study: DC Motor


Inputs: $v_{\rm a}$ – input voltage

 $\tau_{\rm e}$ – load/disturbance torque

Outputs: $\omega_{\rm m}$ – angular speed of the motor

Transfer function:

$$\Omega_{\rm m} = \frac{A}{\tau s + 1} V_{\rm a} + \frac{B}{\tau s + 1} T_{\rm e}$$
 $\tau - \text{time constant}$
 $A, B - \text{system gains}$

Objective: have $\Omega_{\rm m}$ approach and track a given reference $\Omega_{\rm ref}$ in spite of disturbance $T_{\rm e}$.