Routh's Test, continued

$$s^n:$$
 1 a_2 a_4 a_6 ... $s^{n-1}:$ a_1 a_3 a_5 a_7 ... $s^{n-2}:$ b_1 b_2 b_3 ... $s^{n-3}:$ c_1 c_2 ...

Next, we form the fourth row marked by s^{n-3} :

$$s^{n-3}: c_1 c_2 \dots$$
where $c_1 = -\frac{1}{b_1} \det \begin{pmatrix} a_1 & a_3 \\ b_1 & b_2 \end{pmatrix} = -\frac{1}{b_1} (a_1b_2 - a_3b_1)$

$$c_2 = -\frac{1}{b_1} \det \begin{pmatrix} a_1 & a_5 \\ b_1 & b_3 \end{pmatrix} = -\frac{1}{b_1} (a_1b_3 - a_5b_1)$$
and so on ...