Routh's Test

$$s^n:$$
 1 a_2 a_4 a_6 ...
 $s^{n-1}:$ a_1 a_3 a_5 a_7 ...
 $s^{n-2}:$ b_1 b_2 b_3 ...

Next, we form the third row marked by s^{n-2} :

$$s^{n-2}: b_1 b_2 b_3 \dots$$
where $b_1 = -\frac{1}{a_1} \det \begin{pmatrix} 1 & a_2 \\ a_1 & a_3 \end{pmatrix} = -\frac{1}{a_1} (a_3 - a_1 a_2)$

$$b_2 = -\frac{1}{a_1} \det \begin{pmatrix} 1 & a_4 \\ a_1 & a_5 \end{pmatrix} = -\frac{1}{a_1} (a_5 - a_1 a_4)$$

$$b_3 = -\frac{1}{a_1} \det \begin{pmatrix} 1 & a_6 \\ a_1 & a_7 \end{pmatrix} = -\frac{1}{a_1} (a_7 - a_1 a_6) \quad \text{and so on } \dots$$

Note: the new row is 1 element shorter than the one above it