2nd-Order Step Response

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$
$$u(t) = 1(t) \longrightarrow y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)$$

where $\sigma = \zeta \omega_n$ and $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ (damped frequency)

The parameter ζ is called the damping ratio

- $\zeta > 1$: system is overdamped
- $\zeta < 1$: system is underdamped
- $\zeta = 0: \text{ no damping}$ $(\omega_d = \omega_n)$