Method of Partial Fractions

Problem: compute $\mathscr{L}^{-1}{Y(s)}$, where

$$Y(s) = \frac{s}{(s+1)(s^2+1)}$$

We seek a, b, c, such that

$$Y(s) = \frac{a}{s+1} + \frac{bs+c}{s^2+1} \quad (\text{need } bs+c \text{ so that } \deg(\text{num}) = \deg(\text{den}) - 1)$$

Find b: multiply by $s^2 + 1$ to isolate bs + c

$$(s^{2}+1)Y(s) = \frac{s}{s+1} = \frac{a(s^{2}+1)}{s+1} + bs + c$$

— now let s = j to "kill" the first term on the RHS:

$$bj + c = (s^2 + 1)Y(s)\Big|_{s=j} = \frac{j}{1+j}$$

Match $\operatorname{Re}(\cdot)$ and $\operatorname{Im}(\cdot)$ parts:

$$c + bj = \frac{j}{1+j} = \frac{j(1-j)}{(1+j)(1-j)} = \frac{1}{2} + \frac{j}{2} \implies b = c = \frac{1}{2}$$