The Final Value Theorem

We can now deduce the Final Value Theorem (FVT):

If all poles of sY(s) are strictly stable or lie in the open left half-plane (OLHP), i.e., have $\operatorname{Re}(s) < 0$, then

$$y(\infty) = \lim_{s \to 0} sY(s).$$

In our examples, multiply Y(s) by s, check poles:

►
$$Y(s) = \frac{1}{s+a}$$
 $sY(s) = \frac{s}{s+a}$
if $a > 0$, then $y(\infty) = 0$; if $a < 0$, FVT does not give correct
answer

►
$$Y(s) = \frac{1}{s^2 + \omega^2}$$
 $sY(s) = \frac{s}{s^2 + \omega^2}$
poles are purely imaginary (not in OLHP), FVT does not give
correct answer

►
$$Y(s) = \frac{c}{s}$$
 $sY(s) = c$
poles at infinity, so $y(\infty) = c$ – FVT gives correct answer