Steady-State Value

$$u(t) = 1(t)$$
 $U(s) = \frac{1}{s}$ \Longrightarrow $Y(s) = \frac{H(s)}{s}$

— can we compute $y(\infty)$ from Y(s)?

Let's look at some examples:

•
$$Y(s) = \frac{1}{s+a}, a > 0$$
 (pole at $s = -a < 0$)
 $y(t) = e^{-at} \implies y(\infty) = 0$
• $Y(s) = \frac{1}{s+a}, a < 0$ (pole at $s = -a > 0$)
 $y(t) = e^{-at} \implies y(\infty) = \infty$
• $Y(s) = \frac{1}{s^2 + \omega^2}, \omega \in \mathbb{R}$ (poles at $s = \pm j\omega$, purely imaginary)
 $y(t) = \sin(\omega t) \implies y(\infty)$ does not exist
• $Y(s) = \frac{c}{s}$ (pole at the origin, $s = 0$)
 $y(t) = c1(t) \implies y(\infty) = c$