Example: Computing $\mathcal{O}(A, C)$

Let
$$A = \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix}$$
, $C = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Here, $n = 2, C \in \mathbb{R}^{1 \times 2}, A \in \mathbb{R}^{2 \times 2} \implies \mathcal{O}(A, C) \in \mathbb{R}^{2 \times 2}$.

$$\mathcal{O}(A,C) = \begin{bmatrix} C \\ CA \end{bmatrix}$$
 where $CA = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -6 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 1 & -5 \end{pmatrix}$

$$\therefore \mathcal{O}(A,C) = \begin{pmatrix} 0 & 1 \\ 1 & -5 \end{pmatrix}$$
 det $\mathcal{O}(A,C) = -1$ \Longrightarrow the system is observable

— recall: this system is in Observer Canonical Form (OCF) ...