Coordinate Transformations and State-Space Models

$$\begin{aligned} \dot{x} &= Ax + Bu & \xrightarrow{T} & \dot{\bar{x}} &= \bar{A}\bar{x} + \bar{B}u \\ y &= Cx & y &= \bar{C}\bar{x} \end{aligned}$$
 where $\bar{A} &= TAT^{-1}, \qquad \bar{B} &= TB, \qquad \bar{C} &= CT^{-1} \end{aligned}$

Claim: Controllability doesn't change. Proof: For any k = 0, 1, ..., $\bar{A}^k \bar{B} = (TAT^{-1})^k TB = TA^k T^{-1}TB = TA^k B$ (by induction) Therefore, $C(\bar{A}, \bar{B}) = [TB | TAB | ... | TA^{n-1}B]$ $- T[B | AB | ... | A^{n-1}B]$

$$= T[B | AB | \dots | A^{n-1}B]$$

= $TC(A, B)$

Since det $T \neq 0$, det $\mathcal{C}(\bar{A}, \bar{B}) \neq 0$ if and only if det $\mathcal{C}(A, B) \neq 0$. Thus, the new system is controllable if and only if the old one is.