Example: Computing $\mathcal{C}(A, B)$

Let's get back to our old friend:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 \\ -6 & -5 \end{pmatrix}}_A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \underbrace{\begin{pmatrix} 0 \\ 1 \end{pmatrix}}_B u, \qquad y = \underbrace{(1 \quad 1)}_C \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Here, $x \in \mathbb{R}^2 \Longrightarrow A \in \mathbb{R}^{2 \times 2} \Longrightarrow \mathcal{C}(A, B) \in \mathbb{R}^{2 \times 2}$

$$\mathcal{C}(A,B) = \begin{bmatrix} B \mid AB \end{bmatrix} \qquad AB = \begin{pmatrix} 0 & 1 \\ -6 & -5 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$$
$$\implies \mathcal{C}(A,B) = \begin{pmatrix} 0 & 1 \\ 1 & -5 \end{pmatrix}$$

Is this system controllable?

$$\det \mathcal{C} = -1 \neq 0 \qquad \Longrightarrow \qquad$$

system is controllable