Step 2: Choose z & p to Shape Tracking Error

So far:
$$KG(s) = \frac{0.4 \cdot 10}{\left(\frac{s}{0.2} + 1\right)\left(\frac{s}{0.5} + 1\right)}$$

$$e(\infty) = \frac{1}{1 + KG(s)}\Big|_{s=0} = \frac{1}{1+4} = \frac{1}{5} = 20\%$$
 (too high)

To have $e(\infty) \le 10\%$, need $KD(0)G(0) \ge 9$:

$$e(\infty) = \frac{1}{1 + KD(0)G(0)} \le \frac{1}{1+9} = 10\%.$$

So, we need

$$D(0) = \frac{s+z}{s+p}\Big|_{s=0} = \frac{z}{p} \ge \frac{9}{4} = 2.25$$
 — say, $z/p = 2.5$

Not to distort PM and ω_c , let's pick z and p an order of magnitude smaller than $\omega_c \approx 0.5$: z = 0.05, p = 0.02