PD Control Design: Evaluation

$$R \xrightarrow{+} KD(s) \xrightarrow{} G(s) \xrightarrow{} Y$$

Initial design: $KD(s) = \frac{10s+1}{20}$

What have we accomplished?

- PM $\approx 90^{\circ}$ at $\omega_c = 0.5$
- ▶ still need to check in Matlab and iterate if necessary

Trade-offs:

- want ω_{BW} to be large enough for fast response (larger $\omega_{BW} \longrightarrow$ larger $\omega_n \longrightarrow$ smaller t_r), but not too large to avoid noise amplification at high frequencies
- ▶ PD control increases slope \longrightarrow increases $\omega_c \longrightarrow$ increases $\omega_{BW} \longrightarrow$ faster response
- usual complaint: D-gain is not physically realizable, so let's try lead compensation