Phase Margin for 2nd-Order System

$$G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n j\omega} = \frac{\omega_n}{2\zeta j\omega \left(\frac{j\omega}{2\zeta\omega_n} + 1\right)}$$
$$\mathrm{PM}\Big|_{K=1} = \tan^{-1}\left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}\right) \approx 100 \cdot \zeta$$

Conclusions:

Thus, the overshoot $M_p = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$ and resonant peak $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} - 1$ are both related to PM through ζ !!