Why √N ?

- Each voting set is of size *K*
- Each process belongs to *M* other voting sets
- Total number of voting set members (processes may be repeated) = *K*N*
- But since each process is in *M* voting sets
 - $K*N/M = N \Longrightarrow K = M$ (1)
- Consider a process Pi
 - Total number of voting sets = members present in P*i*'s voting set and all their voting sets = (M-1)*K + 1
 - All processes in group must be in above
 - To minimize the overhead at each process (*K*), need each of the above members to be unique, i.e.,
 - N = (M-1)*K + 1
 - N = (K-1)*K + 1 (due to (1))
 - $K \sim \sqrt{N}$