Why does the Algorithm

- After *f*+1 rounds, all non-faulty processes would have received the same set of Values. Proof by contradiction.
- Assume that two non-faulty processes, say p_i and p_j , differ in their final set of values (i.e., after f+1 rounds)
- Assume that p_i possesses a value v that p_i does not possess.
 - $\rightarrow p_i$ must have received v in the very last round
 - \rightarrow Else, p_i would have sent v to p_i in that last round
 - → So, in the last round: a third process, p_k , must have sent v to p_i , but then crashed before sending v to p_i .
 - → Similarly, a fourth process sending v in the last-but-one round must have crashed; otherwise, both p_k and p_j should have received v.
 - → Proceeding in this way, we infer at least one (unique) crash in each of the preceding rounds.
 - → This means a total of f+l crashes, while we have assumed at most f crashes can occur => contradiction.