Consensus in Synchronous <u>Possible to achieve!</u>

For a system with at most f processes crashing

- All processes are synchronized and operate in "rounds" of time
- the algorithm proceeds in *f*+1 rounds (with timeout), using reliable communication to all members. Round length >> max transmission delay.
- *Values*^r *i*: the set of proposed values known to p_i at the beginning of round r.

- Initially
$$Values_{i}^{0} = \{\}$$
; $Values_{i}^{1} = \{v_{i}\}$
for round = 1 to $f+1$ do

multicast (Values $r_i - Values^{r-1}_i$) // iterate through processes, send each a message Values $r^{+1}_i \leftarrow Values^r_i$ for each V_j received Values $r^{+1}_i = Values r^{+1}_i \cup V_j$ end

end

 $d = \min(Values f^{+1}) // consistent minimum based on say id (not minimum value)$