Sequencer-based Approach

- Special process elected as leader or sequencer
- Send multicast at process Pi:
 - Send multicast message M to group and sequencer
- Sequencer:
 - Maintains a global sequence number S (initially 0)
 - When it receives a multicast message M, it sets S = S + 1, and multicasts $\langle M, S \rangle$
- Receive multicast at process Pi:
 - Pi maintains a local received global sequence number Si (initially 0)
 - If Pi receives a multicast M from Pj, it buffers it until it both
 - 1. Pi receives $\langle M, S(M) \rangle$ from sequencer, and
 - $2. \quad \mathrm{S}i + 1 = \mathrm{S}(\mathrm{M})$
 - Then deliver it message to application and set Si = Si + 1