Chandy-Lamport Global Snapshot algorithm creates a consistent <u>cut</u>

Let's quickly look at the proof

•Let e_i and e_j be events occurring at Pi and Pj, respectively such that

- $e_i \rightarrow e_j$ (e_i happens before e_j)
- •The snapshot algorithm ensures that

if e_i is in the cut then e_i is also in the cut.

- That is: if $e_i \rightarrow \langle Pj \text{ records its state} \rangle$, then
 - it must be true that $e_i \rightarrow \langle Pi \text{ records its state} \rangle$.