Maximum a Posteriori (MAP) Estimate

$$\Lambda^* = \underset{\Lambda}{\operatorname{arg\,max}} p(\Lambda) p(Data \mid \Lambda)$$

- We may use $p(\Lambda)$ to encode all kinds of preferences and constraints, e.g.,
 - $-p(\Lambda)>0$ if and only if one topic is precisely "background": $p(w|\theta_B)$
 - p(Λ)>0 if and only if for a particular doc d, $\pi_{d,3}$ =0 and $\pi_{d,1}$ =1/2
 - $p(\Lambda)$ favors a Λ with topics that assign high probabilities to some particular words
- The MAP estimate (with conjugate prior) can be computed using a similar EM algorithm to the ML estimate with smoothing to reflect prior preferences