A General Definition of HMM

 $HMM = (S, V, B, A, \Pi)$ $V = \{v_1, ..., v_M\}$ $S = \{S_1, ..., S_N\}$ **N states M symbols Output probability:**

Initial state probability:

1 1 $\{\pi_1,...,\pi_N\}$ $\sum \pi_i = 1$ *N* N^f $\sum_i^n i$ *i* π , π _y \longrightarrow π = $\Pi = {\pi_1, ..., \pi_N} \quad \sum \pi_i =$ π_i : prob of starting at state s_i

State transition probability:

$$
A = \{a_{ij}\} \quad 1 \le i, j \le N \quad \sum_{j=1}^{N} a_{ij} = 1
$$

$$
a_{ij} : prob \ of \ going \ s_i \rightarrow s_j
$$

1 ${b_i(v_k)}$ $1 \le i \le N, 1 \le k \le M$ $\sum b_i(v_k) = 1$ *M* $i(k)$ $j = 1 \leq i \leq N$, $1 \leq k \leq M$ $\sum_{i} U_i V_k$ *k* $B = \{b_i(v_k)\}$ $1 \le i \le N, 1 \le k \le M$ $\sum b_i(v_k)$ = $= \{b_i(v_k)\}$ $1 \le i \le N, 1 \le k \le M$ $\sum b_i(v_k) =$

 $b_i(v_k)$: prob of " generating " v_k at s_i