Proving $f(n) \ge 2n$ for $n \ge 8$

Definition of function $f : \mathbb{Z}^+ \to \mathbb{Z}$:

•
$$f(1) = f(2) = 1$$
 and

•
$$f(n) = f(n-1) + f(n-2)$$
 for $n \ge 3$

We wish to prove $f(n) \ge 2n$ for $n \ge 8$.

Let P(k) be the statement that $f(k) \ge 2k$.

Base cases: we already have shown P(N) is true for N = 8, 9, 10. Let $N \ge 10$ be arbitrary (note that I pick 10 because that is the largest base case I examined).

Our Inductive Hypothesis is that P(k) is true for all $k, 8 \le k \le N$.