Proving $f(n) \ge 2n$ for $n \ge 8$

The Inductive Hypothesis is

• $P(8) \land P(9) \land \ldots \land P(N)$ is true

where P(k) asserts that $f(k) \ge 2k$ and $N \in \mathbb{Z}^{\ge 10}$ is arbitrary.

Since $N \ge 10$, by the definition of the function f:

•
$$f(N+1) = f(N) + f(N-1)$$

Note that N - 1 and N - 2 are both at least 8. Therefore, by the I.H.:

- $f(N) \ge 2N$ and
- $f(N-1) \ge 2(N-1)$

Hence $f(N + 1) \ge 2N + 2(N - 1) \ge 4N - 2 \ge 2(N + 1)$

Note: the second inequality uses that $N \ge 10$.

Hence $f(N + 1) \ge 2(N + 1)$, which is the same as P(N + 1).

Since $N \ge 10$ was arbitrary, P(N) is true for all $N \ge 8$.