Proving $f(n) \ge 2n$ for $n \ge 8$

Recall that $N \ge 10$ is arbitrary.

The Inductive Hypothesis is

• $P(k) : f(k) \ge 2k$ for all integers k between 8 and N.

The Inductive Step is to show that

 $[P(8) \land P(9) \land \ldots \land P(N)] \to P(N+1)$

We write down what P(N+1) asserts to help us come up with the proof!

P(N+1) asserts that $f(N+1) \ge 2(N+1)$

In other words, we want to use the I.H. to prove that $f(N+1) \ge 2(N+1)$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)