Finishing the Induction Proof

Recall $f : \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$, and the inductive hypothesis is: $P(K) : f(n,m) \ge n + m$ for all positive integers n, m with $n + m \le K$

To finish the induction proof, we need to show $P(K) \rightarrow P(K+1)$, which is equivalent to showing

 $P(K) \rightarrow \forall n, m \text{ such that } n + m \leq K + 1, f(n, m) \geq n + m$

However, since the I.H. assumes $f(n, m) \ge n + m$ whenever $n + m \le K$, we only need to show that

▶ $P(K) \rightarrow f(n, m) \ge n + m$ whenever n + m = K + 1.