Using strong induction

Let $F : \mathbb{Z}^+ \to \mathbb{Z}$ be defined by • F(1) = 1 and F(2) = 0• F(n) = F(n-2) if n > 2Then $F(n) = n \mod 2$ for all $n \in \mathbb{Z}^+$.

Let P(k) be the assertion:

$$\blacktriangleright F(k) = k \mod 2$$

and let us assume that $P(1), P(2), \ldots, P(n)$ are all true. We need two base cases n = 1 and n = 2. Does this work? (YES) Why do we need two base cases? (You'll see later)