A harder case

Let $F : \mathbb{Z}^+ \to \mathbb{Z}$ be defined by $\blacktriangleright F(1) = 1$ and F(2) = 0 $\blacktriangleright F(n) = F(n-2)$ if n > 2Then for all positive integers $n, F(n) = n \mod 2$

Let's try to prove this by induction on n.

Let's make our Boolean statement P(n) be:

•
$$F(n) = n \mod 2$$

where $n \mod 2$ is the remainder after dividing n by 2.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・