Another simple proof by induction

Let A_n for $n \in \mathbb{Z}^+$ be a set defined by:

•
$$A_1 = \emptyset$$

$$\blacktriangleright A_n = A_{n-1} \cup \{n-1\}$$

We wish to prove that $A_n = \{1, 2, \dots, n-1\}$ for all $n \in \mathbb{Z}^{\geq 2}$.

Let's prove this by induction!

Base case is n = 2. By definition, $A_2 = A_1 \cup \{1\} = \emptyset \cup \{1\} = \{1\}$. So the base case is good!

The Inductive Hypothesis is the statement $P(n) = "A_n = \{1, 2, ..., n-1\}"$

Let $n \ge 2$ be arbitrary. Can we show $P(n) \rightarrow P(n+1)$?