Bounding this recurrence relation

The running time $t_2(n)$ for this algorithm satisfies

- ▶ $t_2(1) \le C_0$
- ► $t_2(2) \le C_1$

•
$$t_2(n) \le t_2(n-1) + C_2$$

for some positive constants C_0 , C_1 , and C_2 . Let $C' = \max\{C_0, C_1, C_2\}$. It is easy to see that C' > 0.

We can prove that $t_2(n) \leq C'n$ for all $n \geq 1$, by induction on n (i.e., linear time).

(Note: even simple induction suffices for this proof.)

In other words, this dynamic programming algorithm is linear time.

In contrast, the recursive algorithm for computing Fibonacci numbres was exponential time!