Another proof by contradiction

Let $F: \mathbb{Z}^+ \to \mathbb{Z}^+$ be defined by

•
$$F(1) = 0$$

•
$$F(n) = 2 + F(n-1)$$
 if $n \ge 2$

We want to prove that $\forall n \geq 2$, $F(n) \geq n$ Equivalently, we want to prove that P(n) is true for all $n \geq 2$, where P(n) is the assertion $F(n) \geq n$.

Class exercise:

- Calculate F(n) for n = 2, 3, 4.
- Is P(n) true for n = 1, 2, 3, 4?