Proof by contradiction – similar to induction proof

We want to prove $orall n \in \mathbb{Z}^+, P(n)$

If the "for all" statement is false, then there must be *some* element $n \in \mathbb{Z}^+$ such that P(n) is False.

Let N be the smallest positive integer where P(N) is false.

We prove that P(1) is true, so that $N \ge 2$ (and hence $N - 1 \ge 1$).

Since N is the smallest positive integer where P(N) is false, it must be that P(N-1) is true.

We then showed that $P(N-1) \rightarrow P(N)$, and hence derived a contradiction.

Note the similarity to a proof by induction!