Proofs by contradiction

We are trying to prove that $\forall n \in \mathbb{Z}^+$, P(n), where $P(n) \equiv [1 + 2 + \ldots + n = n(n+1)/2]$.

- 1. We showed P(1) true and we let N be the smallest positive integer n such that $\neg P(n)$. Hence $N \ge 2$ and so $N 1 \ge 1$.
- 2. Therefore, P(N-1) is true, and so

$$1+2+\ldots+(N-1)=(N-1)N/2$$

3. We add N to both sides of the equation above, and obtain

$$1 + 2 + \ldots + N = (N - 1)N/2 + N$$

4. Note that

$$(N-1)N/2 + N = N(N+1)/2$$

so that $1 + 2 + \ldots + N = N(N + 1)/2$

- 5. Thus, we have derived P(N), contradicting our hypothesis!
- 6. Therefore, it must be that $\forall n \in \mathbb{Z}^+, 1+2+\ldots+n = n(n+1)/2.$