Proofs by contradiction

Theorem: $\forall n \in \mathbb{Z}^+, 1 + 2 + ... + n = n(n+1)/2$

Proof by contradiction. Let P(n) denote the assertion 1 + 2 + ... + n = n(n + 1)/2. If the theorem isn't true, then P(n) is not true for some $n \in Z^+$. Note that P(1) is true.

Therefore the smallest *n* such that P(n) is False must be at least 2. Let's call the smallest such value *N*, so that P(N) is False. Since $N \ge 2$, it follows that $N - 1 \ge 1$ and so P(N - 1) is True!