Same theorem, now proof by induction

Recall definition of S_n . We let P(n) be the Boolean statement $S_n = \{x \in \mathbb{Z}^+ | x \le n\}$ "

Theorem: P(n) is true for all $n \in \mathbb{Z}^+$ **Proof:** by induction on *n*.

- The base case is n = 1. By definition, $S_1 = S_0 \cup \{1\} = \{1\}$, and so P(1) is true.
- Let $N \in \mathbb{Z}^+$ be arbitrary.
- Inductive hypothesis: P(N) is true.
- ▶ Note $N + 1 \ge 2$, and so by definition $S_{N+1} = S_N \cup \{N + 1\}$.
- By the I.H., $S_N = \{1, 2, ..., N\}$.
- Hence $S_{N+1} = \{1, 2, \dots, N\} \cup \{N+1\} = \{1, 2, \dots, N+1\}.$
- Since N was arbitrary, P(N) is true for all $N \ge 1$.