Proving $F(n) \ge n$ for all $n \ge 2$ by contradiction

Recall the definition of the function $F : \mathbb{Z}^+ \to \mathbb{Z}^+$:

•
$$F(1) = 0$$

•
$$F(n) = 2 + F(n-1)$$
 if $n \ge 2$

We want to prove that $\forall n \geq 2$, $F(n) \geq n$ We assumed N was the smallest positive integer such that F(N) < N and showed

$$F(N-1) \geq N-1$$

Since $N \ge 3 > 2$, by definition

$$F(N) = 2 + F(N-1)$$

Combining these two statements, we get

$$F(N) \ge 2 + (N-1) = N + 1 > N$$

But this means P(N) is true, contradicting our hypothesis.