For strong induction

For strong induction, don't confuse your variables with each other (they are not interchangeable)

For example, suppose you want to prove that f(n) = 0 for all $n \in \mathbb{Z}^+$ where f is defined by

•
$$f(1) = f(2) = 0$$

•
$$f(n) = f(n-2)$$
 if $n \ge 3$

You say P(n) asserts that f(n) = 0, and you check base cases n = 1, 2.

Your Inductive Hypothesis is: for some arbitrary $n \ge 2$, P(k) is true for all integers k between 1 and n

You now want to show that P(n+1) is true.