Karp Reductions

Suppose you have two decision problems, π and π' . Suppose $\pi' \in \mathcal{P}$, and that \mathcal{A} is a polynomial time algorithm to solve π' .

Suppose we have a function F that maps inputs to π to inputs to $\pi',$ so that:

- YES-instances of π map to YES-instances of π'
- NO-instances of π map to NO-instances of π'
- ► The function *F* takes polynomial time to compute

► The size of *F*(*I*) is polynomial in the size of *I* for any input *I* Such a function *F* is called a *Karp* reduction, after Dick Karp (Berkeley) who came up with them.