Relationship between decision, optimization, and construction problems

We define Algorithm C to find a maximum matching, as follows. The input is graph G = (V, E). If $E = \emptyset$, we return \emptyset . Otherwise, let $E = \{e_1, e_2, \ldots, e_m\}$, and let $k = \mathcal{B}(G)$.

- Let G^* be a copy of G
- For i = 1 up to m DO
 - ▶ Let G' be the graph obtained by deleting edge e_i (but not the endpoints of e_i) from G*.

- If $\mathcal{A}(G', k) = YES$, then set $G^* := G'$.
- Return the edge set $E(G^*)$ of G^* .

It is easy to see that C calls B once, calls A at most m times, and does at most O(m) other operations. Hence the running time satisifes the required bounds. What about accuracy?